A Path-based Transfer Model for Machine Translation

نویسنده

  • Dekang Lin
چکیده

We propose a path-based transfer model for machine translation. The model is trained with a word-aligned parallel corpus where the source language sentences are parsed. The training algorithm extracts a set of transfer rules and their probabilities from the training corpus. A rule translates a path in the source language dependency tree into a fragment in the target dependency tree. The problem of finding the most probable translation becomes a graph-theoretic problem of finding the minimum path covering of the source language dependency tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

A Dependency Edge-based Transfer Model for Statistical Machine Translation

Previous models in syntax-based statistical machine translation usually resort to some kinds of synchronous procedures, few of these works are based on the analysis-transfer-generation methodology. In this paper, we present a statistical implementation of the analysis-transfergeneration methodology in rule-based translation. The procedures of syntax analysis, syntax transfer and language genera...

متن کامل

Example-based Machine Translation Based on Syntactic Transfer with Statistical Models

This paper presents example-based machine translation (MT) based on syntactic transfer, which selects the best translation by using models of statistical machine translation. Example-based MT sometimes generates invalid translations because it selects similar examples to the input sentence based only on source language similarity. The method proposed in this paper selects the best translation b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004